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Analysis of a Conducting Crack in an Electrostrictive Ceramic 
Under Combined Electric and Mechanical Loading 

Hyeon Gyu Beom*, Kyoung Moon Jeong, Eun Do Jeong 
Department o f  Mechanical Engineering, Chonnam National University, 

Kwangju 500- 757, Korea 

A conducting crack in an electrostrictive ceramic under combined electric and mechanical 

loading is investigat.ed. Analysis based on linear dielectric model predicts that the surfaces of the 

crack are not open completely but they are contact near the crack tip. The complete solution for 

the crack with a contact zone in a linear electrostrictive ceramic under combined electric and 

mechanical loading is obtained by using the complex variable formula. The asymptotic problems 

for a semi-infinite crack with a partial opening zone as well as for a fully open semi-infinite 

crack in a nonlinear electrostrictive ceramic are analyzed in order to investigate the effect of the 

electrical nonlinearity on the stress intensity factor under small scale nonlinear conditions. 

Particular attention is devoted to a finite crack in the nonlinear electrostrictive ceramic subjected 

to combined electric and mechanical loading. The stress intensity factor for the finite crack 

under small scale nonlinear conditions is obtained from the asymptotic analysis. 

Key Words:Eiectrostrictive Ceramic, Conducting Crack, Contact, Electrical Nonlinearity, 

Asymptotic Analysis, Stress Intensity Factor 

I. Introduction 

Electrostrictive ceramics are the subject of in- 

tense research studies due to their wide engineer- 

ing applications in advanced technological areas. 

An issue of extreme concern is their reliability 

(Winzer et al., 1989; Yang and Suo, 1994) in 

environments where complex physical pheno- 

mena take place. Typical examples are multilayer 

electromechanical devices, electronic components, 

and sensors and actuators embedded in intelligent 

structures. In these and other applications loading 

conditions of mechanical and electrical nature 

tend to produce high stresses and large deforma- 

tions, which may cause deleterious processes and 

even catastrophic failure. Therefore, to prevent 
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failure during service and to secure the structural 

integrity of electromechanical devices using the 

materials, understanding of fracture behavior of 

electrostrictive ceramics is of great importance. 

These issues regarding the effect of an electrical 

field on crack growth in electrostrictive ceramics 

have been raised in the literature (Yang and Suo, 

1994; Hao et al., 1996; Ru et al., 1998). The 

electric field around inhomogeneities such as in- 

clusions and internal electrodes is intense and 

nonuniform and the induced incompatible strain 

fields generate stresses. Stress concentrations at 

these inhomogeneities can lead to critical crack 

growth and subsequent mechanical failure. There- 

fore, the analysis of cracks in electrostrictive 

ceramics has attracted the attention of many re- 

searchers (Smith and Warren, 1966, 1968; Mc- 

Meeking, 1987, 1989, 1990; Suo, 1993). Analysis 

based on linear dielectric model predicts that 

the stress field at the crack tip has physically 

inadmissible singularity. Furthermore, an electri- 

cal field does not induce any non-zero stress 

intensity factor for a conducting crack due to 
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contact of the crack surfaces near the crack tip. 

However, there is a zone near the crack tip for 

which the linear electric solution fails due to 

material nonlinearity. The dielectric nonlinearity 

is most pronounced in the vicinity of the tip of 

a crack in electroceramics subjected to electric 

fields. The dielectric nonlinearity near the crack 

tip plays an important role in the behaviour of 

electric and elastic fields near the crack tip. 

Recently, significant progress has been made in 

determining complete crack-tip fields lbr non- 

linear electrostrictive ceramics. Beom (1999a, 

1999b) showed that the dominant crack-tip field 

of the stress for a nonlinear electrostrictive cer- 

amic has inverse square root singularity. He also 

verified from the nonlinear analysis that the 

surfaces of the conducting crack under electric 

loading are partially open in the vicinity of  the 

crack tip due to the nonlinear zone. These 

analyses, however, only addressed the effects of 

electrical loading on the stress intensity factor for 

a crack in a nonlinear electrostrictive material. 

The effect of combined electrical and mechanical 

loading on the stress intensity factor has not been 

investigated as yet. 

The purpose of this study is to investigate the 

problem of a crack with electrically conducting 

surfaces in an electrostrictive ceramic under com- 

bined electric and mechanical loading. Of partic- 

ular interest is the effect of combined electrical 

and mechanical loading on the stress intensity 

factors for the conducting crack. The complete 

solution tbr the conducting crack is obtained by 

using the complex variable formula for a linear 

electrostrictive ceramic. The linear dielectric the- 

ory predicts that the surfaces near the tip of  the 

conducting crack under combined electric and 

mechanical loading are closed. Due to the non- 

linear zone near the crack tip, the surfaces of the 

conducting crack, however, are partially open in 

the vicinity of the crack tip. In order to investigate 

the effect of the electrical nonlinearity on the 

stress intensity factor under small scale nonlinear 

conditions, we consider the asymptotic problems 

for a semi-infinite crack with a partial opening 

zone as well as for a fully open semi-infinite 

crack in a nonlinear electrostrictive ceramic. The 

stress intensity lhctors lbr the asymptotic pro- 

blems are evaluated from the solution of the 

corresponding conducting sheet by applying su- 

perposition. For the small mechanical load ap- 

plied at infinity, the size of  the partial opening 

zone near the tip of the conducting crack under 

combined electric and mechanical loading is 

small. Sufficiently large mechanical loading 

applied on the external boundary opens the entire 

surface of the conducting crack, in contrast to the 

result obtained from the linear dielectric theory. 

The stress intensity factors for the conducting 

crack in the nonlinear electrostrictive ceramic 

subjected to combined electric and mechanical 

loading under small scale nonlinear conditions 

are obtained from the asymptotic analysis. 

2. Linear Eleetromechaniea l  Analys is  

Consider a crack lying on the interval ( - - a ,  a) 

in an electrostrictive ceramic with strain qua- 

dratic in electric displacement under combined 

electric and mechanical loading, as shown in 

Fig. I. Uniform electric fields EF and E~ are 

prescribed at infinity. Constant stresses 0"~ and 

a22' °'12 E~ 

l 

//? ;1 
Fig. 1 Crack in an electrostrictive ceramic under 

combined electric and mechanical loading 
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o'~ are applied at infinity. The surfaces of the 

crack are assumed to be traction free and elec- 

trically conducting. The two in-plane compon- 

ents of  displacements and the electric potential are 

assumed to depend only on the in-plane Car- 

tesian coordinates, xa and xz. Under the plane 

strain conditions, the constitutive laws for an 

isotropic electrostrictive ceramic are (Yang and 
Suo, 1994) 

1 + u ( a i j -  Uakh~;~) ~'i~= y 

+ Q ( 1 +q)  D~Ds-- Oq (1 + u) DkD~c~i~, 

Di = eEl.  

(1) 

Here ?'is, o'ij, /3; and E• are the strain, the stress, 

the electric displacement and the electric field, 

respectively. Y and u are the Young's modulus 

and the Poisson's ratio, respectively, Q and q are 

the electrostrictive coefficients, e is the dielectric 

permittivity, and ~ is the Kronecker delta. The 

repetition of an index in a term denotes a 

summation with respect to that index over its 

range 1 to 2 for a Roman letter lowercase. 

General solutions for the electric field and the 

displacement field that satisfy the equilibrium 

equations for a homogeneous isotropic linear 

electrostrictive solid, and the corresponding stress 

components may be written in terms of three 

analytic functions as (Knops, 1963) : 

-- E1 q- iE2 = g2' (z) ,  

2G ( ul + iu2) = ( 3 - 4 u )  q~(z) - z@" ( z) - ( t (z)  

+ SS2 (z) S2" (z) 

-4~4(1--V) sf  sa,(z)2dz 
Crzz q- 0"11 

3 =~o'(z) +~o'(z) - S S 2 ' ( z ) S 2 " ( z ) ,  

a = -  au .~ ia,2 = z~o" (z) + ¢,' (z) 2 

- Ss2" (z) S2 (z) .  

(2) 

Here ui is the displacement and z = x l  + ixz. q~ (z),  

Ik(z) and O(z )  are analytic functions, overbar 
( - )  denotes the complex conjugate and prime( ')  
implies the derivative with respect to the argu- 

Y 
G - - -  

2 ( l + u )  ' 

S - -  l - ( l + 2 u ) q  y 
4 1- -~  2ezo '  (3) 

2 - - 2 ( 1 + 2 u )  q 
/3= 

l + q  

The complex variable formula enables us to 

formulate the boundary value problem in terms of 

the complex functions. The solution to a problem 

of the crack in the electrostrictive material is 

reduced to finding the functions ~2 (z) ,  q~(z) and 

~k(z), which satisfy the boundary conditions of 

the problem. Once the three complex functions are 

determined, the complete electric and elastic fields 
are evaluated from Eqs. (1) and (2). 

We consider separately the electric problem for 

the conducting crack in a linear electrostrictive 

ceramic under electric loading since the electric 

field for the linear electrostrictive problem does 

not depend on the elastic field. The electric 

boundary conditions on the conducting crack 
surface and at infinity are 

E1 (xl, 0) =0 ,  [ xl l<  a, 
(4) 

E I =  ET,  E z =  E~,  z---' c~. 

The complex function generating the electric field 

for the problem can be written as (Smith and 
Warren, 1966, 1968) 

S2(z) = - E T ' ~ a  2 +iE~ 'z .  (5) 

The intensity factor of electric field for a 

conducting crack is defined such that E l = K ( /  

on the prolongation of the crack at a 

distance r ahead of the crack tip. The intensity 

factor of  electric field for a crack is evaluated 

from Eqs. (2) and (5), which yields 

K (  = ET' f~d .  (6) 

Next, we consider the elastic problem for the 

conducting crack in a linear electrostrictive ce- 

ramic under combined electric and mechanical 

loading. According to Beom (1999b), the traction 

free boundary conditions on the surfaces of the 

conducting crack under electric loading lead to 

overlapping of the conducting crack surfaces. The 

surfaces of the crack cannot be thus open corn- 

2opyrightment z. G, S(c)and 2003/3 are constantsN u riMediagiven by C o . ,  LtP(~etely. but they are contact near the crack tip. We 
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ET,E~ 

°:"°" ill/// 

/ / / I l l  
Fig. 2 Application of 

E~,E~ 

/ / /  

/ / /  
(a) Electric loading 

Ill ~22 ~ O'12 

(b) Mechanical loading 

superposition to obtain the solution for a conducting crack with a contact zone 

consider a crack with a contact zone as shown in 

Fig. 2. The mechanical boundary conditions on 

the surfaces of the crack with contact zone are 

az~(xl, 0) =0, I xl I< a, 
a=(x~, o) =o, I x, l< b, 
uz(x,, 0 +) = uz (x,, 0-),  (7) 

a=(x~, 0 +) =a=(x, ,  0-), b<l  x~ I<a.  

Here b is the half size of the opening zone for 

the conducting crack, which will be determined 

exactly later. We are only concerned with fric- 

tionless contact of the crack surfaces in this paper. 

It is sufficient to consider separately the problem 

under electric loading or mechanical loading 

since the superposition principle can be applied 

to purely elastic fields for the electrostrictive pro- 

blem. The complete solution for the electrostric- 

tive crack under combined electric and mechan- 

ical loading is obtained by superposition. The 

superposition applied to the crack in an electro- 

trictive material under combined electric loading 

and mechanical loading is illustrated in Fig. 2. 

The complex functions for the conducting crack 

are written as 

~(z) = ¢0"(z) + ¢o'(z), 
¢~(z) = ¢ ' (z)  + ¢, '(z), (8) 

where the superscripts e and m indicate the 

quantities associated with the problems of the 

crack under electric loading and mechanical 

loading, respectively. The complex functions for 

the conducting crack with the contact zone are 
written as 

9"(z) =2S(E=)Zz+ iSE'~ E~z f Z S ~  +GC In z - a  T4~ 
+CC{ ~ [ ~ - z ]  

L \ z+a/,/~_ ~ j j '  

Z~-aZJ (9) 

~ J J  
Gr[2fll z ,1. 2a F , , z , / ~ ] ]  

- T 

where C =  ( I + q ) ~ Q ( K f ) 2  The solution of 
87r(1-v) 

the complex functions for the problem of the 

conducting crack with a contact zone under the 

mechanical loading is well known as (Mus- 

khelishivili, 1963) 

l 1 = 2 

I i a3 ( , /~ - z ) ,  
2 

1 ® b z 

1. z 2 

(lO) 
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The opening size can be determined from the 

condition K}S)=0 where K} s> is the stress inten- 

sity factor for the right tip of the partially opening 

crack located at the point B(x1=b,  x2=0) .  The 

stress intensity factor K} B) is obtained from Eqs. 

(2), (5) and (8) as 

K}S' = 4GaC J -~I /~*  ~ ] ,  (11) 

/?* R4- ao'~ where ~ = ~ , _ ~ .  Solving K}8}=0 for b, the 

opening size is given by 

b = a ~ / ~ - f l l z  f o r / 3 " > 1 ,  (12) 

b = 0  for /3"  < 1. 

It is noted that the opening size depends on the 

ratio of the external stress to the external electric 

field applied at infinity. Since the complex 

functions for the conducting crack with the con- 

tact zone are determined as above, the stresses 

and displacements can be evaluated from Eq. (2). 

The stresses on the closed crack surface and the 

prolongation of the crack are 

~ + i a x 2 = - 4 G C ~  ~ for b<xl<a. 
- 

. .  4GC V~,f Xl v ~ q  
~,d_lo.lz___TL J 1 xlT~_b2_l } axl _ _  (13) 

Xl + ~ + i a ~  for x~>a. 

It is noted that the normal stress on the closed 

surface of the crack is compressive. The jump in 

the normal displacement on the crack surfaces 

for [ x l I < b i s  

A u 2 = 8 C ( l _ v )  ~ b2~-x l  2 - 1 ~ 7  tan ~ - .  (14) 

3. Asymptotic Nonlinear Analysis 

In order to investigate the effect of  the electrical 

nonlinearity on the stress intensity factor under 

small scale nonlinear conditions, we consider the 

asymptotic problem of a semi-infinite crack with 

a traction free zone in a nonlinear electrostrictive 

ceramic under electric loading as shown in Fig. 3. 
The size of traction free zone on the semi-infinite 

, opyright (C) 2003 NuriMedia Co., 

conducting crack is d.  The electric constitutive 

relation for the nonlinear electrostrictive ceramic 

is assumed to have the following form 

E i = ~ o D i  D<Do, 
(15) 

E _ ~ ,  { D "~"Di , - - . , : ,o \~)  ~ D>Do, 

where Eo, Do and n are the material constants 

and D =  D.~D~k. Do/Eo is equal to the dielectric 

permittivity e. The remote electric field in the 

asymptotic problem is prescribed to be the near-  

tip electric field for the crack in the linear 

dielectric material. Introducing cylindrical coor- 

dinates r and 0 centered at the tip of the crack as 

shown in Fig. 3, the electric fields at infinity are 
written as 

E K :  1,~ K :  1 
~ = ~ c o s  ~ c , ,  ~/2~r E e = - - - s i n  2 0' ~ (16) 

where K~ is the intensity factor of the electric 

field for the conducting crack. Dimensional 

considerations require that the stress intensity 

factors due to the small scale nonlinear zone 

around the crack tip are related to the material 

constants and the electric intensity factor by 

K f = A ( d / R o ;  v, q, n)ao~f~oo, 
(17) 

Kf{e}=A{e}(d /Ro ; u, q, n)ao~/~o.  

Here K ~  and K~ w} are the stress intensity 

factors due to the small scale nonlinear zone for 

the original tip of the conducting crack and the 

left tip of the partial opening crack located at the 

point P ( r = d ) ,  respectively. A and A {e) are the 

normalized stress intensity factors, d0=YQD~0 

EL E~/ / /  

, . .  X2  

//t/  
Fig. 3 

Ltd. 

Asymptotic problem for an electrostrictive 
crack under electric loading 
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A 

F i g .  5 

r 

= + 

F i g .  4 Application of superposition to obtain the stress intensity factor fbr a conducting crack 
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Normalized stress intensity factor A Ibr the 

original tip of the conducting crack as a 

function of d/Ro 
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10 4 10 ~ 10 I 

d/P,  
F i g .  6 

1 0  z 103 

Normalized stress intensity factor A (P) for the 

left tip of the partial opening crack as a 

function of d/Ro 

and -Jr \ E0 We can evaluate the stress 

intensity factor for the electrostrictive crack from 

the solutions of  the corresponding conduct ing 

sheet as shown in Fig. 4, by applying superposi-  

tion. The  stress on the conduct ing sheet induces 

the stress intensity t:actors given by Murakami  

(1987) : 

l 2 p d  

(18) 

K , " P )  = f (r) 
where o'~2 ( r )  is the stress on the conduct ing sheet 

for the asymptotic problem of  a conduct ing 

semi-infini te  sheet, which has been presented in 

Beom (1999b). Performing the integrals in Eq. 

(18) numerically,  we obtain the stress intensity 

factors. Figures 5 and 6 illustrate the effect of  the 

electric displacement hardening exponent  on the 

normalized stress intensity factors A and A w) as 

d varies. Here u = q = 0 . 3  has been used in the 

numerical  calculations.  A high hardening ex- 

ponent o f  the electric displacement results in a 

higher stress intensity factor K~.  In the l imiting 

case as n---* o o  the stress on the conduct ing 

sheet is (Hao et al., 1996) 

Copyright (C) 2003 NuriMedia Co., Ltd. 



Analysis o f  a Conducting Crack in an Electrostrictive Ceramic Under Combined Electric and ... 1123 

~2 { r) = - ~ o  [21n ~oo + l + fl] (O< r<-2Ro) , 

( Ro '~2] (191) ~22~r'=~oo[21n(r~R°)-('+13),r_Ro/j 
(r>2R0). 

Substi tuting Eq. (19) into Eq. (18), it can be 

shown that the normalized stress intensity factors 

for 0<d- -<2R0 are written in closed form as 

A(d /Ro:  v, q, oo) 

I J + ~ -  /~'~- [1 +4  In 2 - f l - 2  In d0 ] ' 
= 8,.' 2 I - u 2 V R o  

(20) 
/l(P~(d/Ro; v. q, oo) 

8 , ' T  i- 2x, 

It is noted that the stress intensity factor dt, e to 

the small scale non l inear  zone around the crack 

tip has a negative value for large value of d. 

The negative stress intensity factor leads to 

overlapping of the crack surfaces. The size of the 

opening zone near the tip of the conduct ing crack 

under  combined electric and mechanical  loading 

will be determined later. 

Sufficiently large mechanical  loading applied 

on the external boundary  opens the entire surface 

of the conduct ing crack. Thus, we consider the 

asymptotic problem of a semi-infini te  crack with 

traction free surfaces in a nonl inear  electrostric- 

tive ceramic under  electric loading. The stress 

intensity factor for the semi- inf ini te  crack can be 

expressed as 

K ~ = A ° ( u ,  q, n) ao ~,/~R~o, (21) 

where AO(u, q, n ) = A ( o o ;  u, q, n) and the 

stress intensity factor for the original  tip of the 

conduct ing crack is given by 

~o s ( r ) )d r  iv / 2  f d'~2 

In Fig. 7, the numerical  result of  the function A ° 

(v, q, n) is shown as a function of n. v = q = 0 . 3  

has been used in the numerical  calculations. 

Making use of Eqs. (19) and (21), it can be 

shown that the normalized stress intensity factor 

A ° tbr the special case of n--~ oo is written in 
closed [brm as 

2opyright (C) 2003 NuriMedia Co., 

1,0 

_A ° 

Fig. 7 

0.8- 

0.6- 

0.4- 

0.2- 

0.0 
0 2'0 4'0 6'0 8() 100 

n 
Normalized stress intensity factor A ° as a 
['unction of n 

_ x+o{5/y+71 /3_2,s! A°(,~. q, oo) 8 , ~  I - ~  ,z 

T I T 
(22) 

The numerical  results shown in Figs. 5 and 6 

approach this closed form solutions as n in- 

creases. 

4. S t r e s s  I n t e n s i t y  F a c t o r  

The surfaces near the tip of the conduct ing 

crack in a linear dielectric as shown ill Sec. 2 are 

closed. Analysis based on linear dielectric model 

predicts that an electrical field does not induce 

any non zero stress intensity factor of the Mode I 

for the crack with a contact zone near the crack 

tip. However, Beom (1999b) showed t¥om the 

nonl inear  analysis that the surfaces of the con- 

ducting crack under  electric loading are partially 

open in the vicinity of the crack tip due to the 

nonl inear  zone. This result gives a suggestion that 

sufficiently large mechanical  loading applied on 

the external boundary  may open the entire surl;ace 

of the conduct ing crack, in contrast to the result 
obtained [¥om the linear dielectric theory. 

Ltd. 
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Fig. 8 

E 1 ,E 2 E I ,E:  

1~22'1~1~ t t l / / /  / / /  (~ 2eO2' ~ l~2 l l t 

///I]I /// l l i  
(a) Electric loading (b) Mechanical loading 

Application of superposition to obtain the solution for a conducting crack under combined electric and 
mechanical loading 

4.1 C r a c k  wi th  a contac t  zone  

We consider a crack in an electrostrictive 

ceramic under combined electric and mechanical 

loading. For  the small mechanical load a~z 

applied at infinity, the size of the partial  opening 

zone near the tip of the conducting crack under 

combined electric and mechanical loading is 

small. The superposition principle can be applied 

to purely elastic fields for the electrostrictive 

problem as shown in Fig. 8. Therefore, we can 

obtain the complete solution for the electrostric- 

tive crack from sum of the solutions of the crack 

under electric loading and the crack under mech- 

anical loading. The total stress intensity factors 

for the left tip of the partial opening crack under 

small scale nonlinear conditions are given by 

Kff)=A~e)(d/Ro; v, q, n)ao ~,/~Roo+a'~ f~[ ,  (23) 

where o.m=o.~. _ _ a  for d/a<<l (Murakami, 

1987). The size of the opening zone near the tip of  

the conducting crack under combined electric and 

mechanical loading can be determined from the 

condition K}e ) :0 .  The total stress intensity fac- 

tors for the electrostrictive crack under small scale 
nonlinear conditions are given by 

K I : A ( d / R o "  u, q, n) Cro ~4'~Roo+cr'~ f ~  -, 
(24) 

The normalized stress intensity factor A °') has a 

3opyri9ht (C) 2003 NuriMedia Co., I_td. 

minimum value _/l~)n for d=dmJ.. When a~ 

is small such that d<dmln, Eq. (24) is valid. In 

particular, the size of the opening zone and the 

stress intensity factor for n ~ oo and 0 < d < 2 R 0  

are expressed in closed form as 

d = R 0 e x p [ l ( 4  In 2 - 3 - / 9 ) + 4 f ) -  ~ ~ ] ,  

K~= 1 l + q  [~ l-v exp (4 2-3-B) 

+2~7- l-v 2 ~] 
l+q 

(25) 

4.2 Open c r a c k  

Consider a fully open crack in an electrostric- 

tive ceramic under combined electric and mech- 

anical loading. SufFiciently large mechanical 

loading applied on the external boundary may 

open the entire surface of the conducting crack. 

When the mechanical loading is large such that 

b+d~_a,  the entire surface of the conducting 

crack is open. The solution of the complex 

functions for the problem of the crack with 

traction free surfaces in a linear electrostrictive 

ceramic under electric loading may be chosen in 

the form : 

~0(Z) :}S (E~) 2z J - S{ (~i)2J - iET*l E~*2 }(~/Z-~ --z), 
~(z) :-S(~) 2-- 

(26) 
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where E~=~/(E?)2+ (E~) 2. It is can be easily 

seen from Eqs. (2), (5) and (26) that the crack 

surfaces near the crack tip under the electric 

loading overlap. However, the surfaces of the 

conducting crack are open due to the nonlinear 

zone near the crack tip and the mechanical load- 

ing. The linear dielectric theory predicts that the 

stress intensity factor for the crack under electric 

loading is 

K, = 2 S  (El') 2T~-. (27) 

It is well known that the stress intensity factor for 

the conducting crack due to mechanical loading is 

given by 

(28) 

Thus, the total stress intensity factors for the 

electrostrictive crack under small scale nonlinear 

conditions are given by 

K1=2S(E~z ) z ~ d +  A°(~ ,, q, n) Cro~+CC;2,/~a, (29) 

K,, = ai~,/~. 

5. Concluding Remarks 

to the nonlinear zone. In order to investigate the 

effect of the electrical nonlinearity on the stress 

intensity factors under small scale nonlinear con- 

ditions, we consider the asymptotic problems for 

a semi-infinite crack with a partial opening zone 

as well as for a fully open crack in a nonlinear 

electrostrictive ceramic. The stress intensity fac- 

tors for the asymptotic problems are evaluated 

from the solution of the corresponding conduc- 

ting sheet by applying superposition. 

Particular attention is devoted to a finite crack 

in the nonlinear electrostrictive ceramic subjec- 

ted to combined electric and mechanical loading. 

For the small mechanical load applied at inf- 

inity, the size of the partial opening zone near the 

tip of the conducting crack under combined elec- 

tric and mechanical loading is small. Sufficiently 

large mechanical loading applied on the external 

boundary opens the entire surface of the con- 

ducting crack, in contrast to the result obtained 

from the linear dielectric theory. The stress inten- 

sity factors for the finite crack under small scale 

nonlinear conditions are obtained from the asy- 

mptotic analysis. 

A conducting crack in an electrostrictive 

ceramic under combined electric and mechanical 

loading is analyzed. Analysis based on linear 

dielectric model predicts that the traction free 

boundary conditions on the crack surfaces lead to 

overlapping of the conducting crack surfaces. The 

surfaces of the crack cannot be thus open com- 

pletely and they are contact near the crack tip. 

The complete solution for the electrostrictive 

crack with a contact zone under combined electric 

and mechanical loading is obtained by using the 

complex variable formula. The size of the open- 

ing zone for the conducting crack is determined 

exactly. The combined electric and mechanical 

loading does not induce any non zero stress 

intensity factor of the Mode I for a conducting 

crack due to contact of the crack surfaces near the 

crack tip. 

However, it is shown from the nonlinear analy- 

sis that the surfaces of the conducting crack under 

combined electric and mechanical loading are 

partially open in the vicinity of the crack tip due 
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